A Random Forest Classifier based on Genetic Algorithm for Cardiovascular Diseases Diagnosis (RESEARCH NOTE)
Authors
Abstract:
Machine learning-based classification techniques provide support for the decision making process in the field of healthcare, especially in disease diagnosis, prognosis and screening. Healthcare datasets are voluminous in nature and their high dimensionality problem comprises in terms of slower learning rate and higher computational cost. Feature selection is expected to deal with the high dimensionality of datasets in terms of reduced feature set. Feature selection improves the performance of classification accuracy particularly performing with less number of features in decision making process. In this paper, Random Forest (RF) is employed for the diagnosis of cardiovascular disease. The first phase of the proposed system aims at constructing various feature selection algorithms such as Principal Component Analysis (PCA), Relief- F, Sequential Forward Floating Search (SFFS), Sequential Backward Floating Search (SBFS) and Genetic Algorithm (GA) for reducing the dimension of cardiovascular disease dataset. The second phase switched to model construction based on RF algorithm for cardiovascular disease classification. The outcome shows that the combination with GA and RF delivered the highest classification accuracy of 93.2% by the help of six features.
similar resources
Diagnosis of Diabetes Using a Random Forest Algorithm
Background: Diabetes is the fourth leading cause of death in the world. And because so many people around the world have the disease, or are at risk for it, diabetes can be called the disease of the century. Diabetes has devastating effects on the health of people in the community and if diagnosed late, it can cause irreparable damage to vision, kidneys, heart, arteries and so on. Therefore, it...
full textIntelligent and Robust Genetic Algorithm Based Classifier
The concepts of robust classification and intelligently controlling the search process of genetic algorithm (GA) are introduced and integrated with a conventional genetic classifier for development of a new version of it, which is called Intelligent and Robust GA-classifier (IRGA-classifier). It can efficiently approximate the decision hyperplanes in the feature space. It is shown experime...
full textA New Algorithm for Voice Activity Detection Based on Wavelet Packets (RESEARCH NOTE)
Speech constitutes much of the communicated information; most other perceived audio signals do not carry nearly as much information. Indeed, much of the non-speech signals maybe classified as ‘noise’ in human communication. The process of separating conversational speech and noise is termed voice activity detection (VAD). This paper describes a new approach to VAD which is based on the Wavelet ...
full textNonlinear Classifier Design Research Based on SVM and Genetic Algorithm
This paper presents a support vector machine (SVM) model structure, the genetic algorithm parameters of the model portfolio optimization model, and used for non-linear pattern recognition, the method is not only effective for linear problems, nonlinear problems apply effective; the law simple and easy, better than the multi-segment linear classifier design methods and BP network algorithm retur...
full textPrediction of Coronary Artery Disease Using Genetic Algorithm Based Feature Selection and Random Forest Classifier
Coronary Artery Disease (CAD) is one of the most prevalent diseases, which can lead to disability and sometimes even death. Diagnostic procedures of CAD are typically invasive, although they do not satisfy the required accuracy. Hence machine learning methods can be used, so that diagnosis can be made faster and with improved accuracy. There are many features that need to be taken into consider...
full textPrediction with Confidence Based on a Random Forest Classifier
Conformal predictors represent a new flexible framework that outputs region predictions with a guaranteed error rate. Efficiency of such predictions depends on the nonconformity measure that underlies the predictor. In this work we designed new nonconformity measures based on a random forest classifier. Experiments demonstrate that proposed conformal predictors are more efficient than current b...
full textMy Resources
Journal title
volume 30 issue 11
pages 1723- 1729
publication date 2017-11-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023